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Abstract-This paper proposes a novel noise- 
insensitive approach to blind channel estimation us- 
ing Shalvi and Weinstein’s blind deconvolution crite- 
ria. It is based on the relation between the associated 
equalizer and the nonblind minimum mean square er- 
ror (MMSE) equalizer reported by Feng, Hsi and Chi. 
As a by-product, the design of the MMSE equalizer is 
also presented without training phase. The proposed 
approach and the designed MMSE equalizer are then 
justified through computer simulation. 

I. INTRODUCTION 

Channel equalization is a crucial signal processing pro- 
cedure for mitigating the multipath fading and noise ef- 
fects of communication channels. Through the training 
phase at the expense of system resources such as band- 
width, the channel and the associated statistical parame- 
ters such as noise spectrum can be estimated, and the ob- 
tained channel and parameters estimates can be applied 
to  design a variety of equalizers such as the well-known 
minimum mean square error (MMSE) equalizer [l]. 

Shalvi and Weinstein [2] proposed a class of blind de- 
convolution algorithms using two cumulants (higher-order 
statistics [3]) for equalization of nonminimum-phase linear 
time-invariant (LTI) channels without the training phase 
when measurements are non-Gaussian. However, for finite 
signal-to-noise ratio (SNR), their criteria generally are not 
able to  provide consistent estimates for the channel and 
associated statistical parameters. In this paper, we show 
that these estimates needed by such as the MMSE equal- 
izer can be accurately extracted using these criteria even 
when the SNR is low. 

11. MODEL ASSUMPTIONS 

Assume that z(n),  n = 0 , 1 , .  . . , N  - 1, are the given 
set of measurements generated as follows: 

00 

z(n) = U(.) * h(n) + w ( n )  = h(k)u(n - k) + w(n) 

(1) 
L=-c8J 

This work was supported by the National Science Council under 
Grant NSC-88-2218-E007-019. 

where h(n) is an unknown LTI channel, u(n) is a source 
signal and w ( n )  is the measurement noise. Let us make 
the following assumptions for h(n),  u(n) and w(n): 

( A l )  h(n) is stable with frequency response H ( w )  = 0 
for w E f l ~  c [-7r,r). 

(A2) ~ ( n )  is zero-mean, independent identically dis- 
tributed (i.i.d.), non-Gaussian with variance g:. 

(A3) w ( n )  is zero-mean white Gaussian with variance g;, 
and statistically independent of ~ ( n ) .  

The assumption ( A l )  indicates that when f l ~  # 0 (an 
empty set), the channel h(n) has zeros on the unit circle 
and its inverse system is unstable, implying that stable 
equalizer achieving zero-forci ng (ZF) equalization [l] does 
not exist. 

111. REVIEW OF SHALVI AND WEINSTEIN’S CRITERIA 

Let v(n) be an equalizer arid e(n)  be the corresponding 
equalized signal as 

e(n)  = z(n)  * v(n) = u(n) * g ( n )  + w(n)  * v(n) (2) 

where 

g(n> = h(n) * v ( n )  (3) 

is the (combined) overall systjem after equalization. More- 
over, let Cp,q{e(n))  denote the (p + q)th-order cumulant 
of (real or complex) e(n)  as 

Cp,,{eW) = cum{e(n), * .  . ,e(n),e*(n>, . . . 7 e * ( n ) )  (4) --- 
p terms q terms 

where the superscript ‘*’ denotes complex conjugation. 
Note that Cl , l (e (n)}  = E{le(n)12}. 

Shalvi and Weinstein [2] proposed to  find the equalizer 
v(n) by maximizing 

where both p and q are nonnegative integers and p + q  2 3. 
The criteria Jp,g include Wiggins’ minimum entropy de- 
convolution (MED) criterion [4] and Donoho’s MED cri- 
teria [5] as special ceases. It .was proved in [2] that maxi- 
mizing Jp,q leads to  the optimum V ( u )  = l /H(w) except 

0-7803-5668-3/99/$10.00 0 1999 IEEE. 659 



for a scale factor and a linear phase term (i.e. the ZF 
equalization), provided that SNR = 00 and RH = 0. 

On the other hand, Feng, Hsi and Chi [6] analyzed the 
behavior of v(n)  associated with Jp,Q for finite SNR and 
RH # 0. Some of their analytic results are to  be used 
later by the proposed approach, and thus summarized in 
the following properties: 

The equalizer v(n)  is related to  the MMSE equal- 
izer, V M S E ( ~ ) ,  via 

V ( w )  = a .  D(w)VMSE(W),  VW E [ -T,T) (6) 

where a is a real positive constant, 

and D(w)  is the Fourier transform of the sequence 

4 n )  = (P. S(n) + Q. S* (n))  . d n )  (8) 

in which 

(9) 

Both the equalizer v(n)  and the overall system g(n)  
are stable for finite SNR regardless of RH = 8 or 
RH # 0, and meanwhile 

. V ( W )  = G(w) = 0, for w E RH. (10) 

The phase response 

arg[V(w)] = - arg[H(w)] - wr + n, (11) 

for w 4 RH where T and IE are constants. In other 
words, G(w)  can be a zerephase system. 

IV. PROPOSED APPROACH 

Let a(n) be the linear prediction error (LPE) filter as- 
sociated with the measurements x(n).  It is well known [7] 
that a(n) is causal minimum-phase with the leading co- 
efficient a(0) = l. Moreover, when the order of a(n) is 
sufficiently large, it is a whitening filter, i.e. 

where S,,(w) is the power spectrum of z(n). 
On the other hand, from (8), (9) and (lo), it follows 

that D(w) may equal zero for some w E RH. To illustrate 
this point, let us consider the case that g(n) is real with 

where 0 < wc < 7r/2, implying that H ( w )  = 0 for 
w E RH = {[-7r, -uC) U (wC,7r)} by (P2). Then the cor- 
responding D ( w )  for p + q = 3 is given by 

(by (8) and (9)) where /3 is a constant. Clearly, D(w)  = 0 
for w E {[-7r, -2wc) U (2wC,7r)} c f l ~ .  

Let RD = {wlD(w)  = 0). Then, from (6), (7) and (12), 
we can easily obtain 

Invoking (15) and (P3), we propose the following FFT- 
based iterative algorithm for estimating H ( w ) .  

Blind Channel Estimation (BCE) Algorithm 

With finite data x(n) ,  obtain an L,th-order causal 
FIR equalizer G(n) using Jp ,q ,  and an Lath-order 
LPE filter Z(n) using the computationally efficient 
Burg's algorithm [7]. Compute their L-point DFT's 
c ( w k )  and A^(wk) where wk = 2xk/L, and then 

Set i = 0. Choose an initial guess IH['](wk)l for 

Set i = i + 1. Compute G[i-'l(wk) = IH[i-'l(wk)l . 
Io(Ldk)l (by (P3)) and then compute its L-point in- 
verse DFT gIi- ' ](n). Compute d(n)  using (8) and 
(9) with g(n) = gii-'I(n) and then compute its L- 
point DFT D (wk) .  

Compute 

Compute R(wk) = Ic(wk)l/lA^(wk)12. 

I (wk)l .  

(by (15)) where ED 2 0 is a preassigned small con- 
stant, and then compute 

IH['l(wk)l = lfi(wk)l/ I g ( W k ) 1 2 .  (17) 
/ k  

If x k [ l H [ i l ( w k ) l  - IH[i-'1(wk)1]2 > E H  (a preas- 
signed tolerance for convergence), then go to  (s3); 
otherwise, H ( W k )  is estimated as 

i ? ( W k )  = IH'il(wk)l . expt-j arg[V(wk)l) 

(by (11)) up to  a scale factor and a time delay. 

(18) 
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After @(U) is obtained by the proposed BCE algorithm, 
the MMSE equalizer VMSE(~) can be readily estimated via 

FMSE(W) = i?*(w). IA^(w)I2 (by (7) and (12)) (19) 

up to a scale factor and a time delay. Next, let us show 
some simulation results. 

V. SIMULATION RESULTS 

This section provides two examples to demonstrate the 
efficacy of the proposed BCE algorithm for channel esti- 
mation as well as the design of MMSE equalizer. 

Example 1. Broadband Channel 

In this example, the source signal u(n) was assumed 
to be a CPAM signal with unity variance and the noise 
w(n)  was real white Gaussian. The channel h(n) was 
a causal FIR filter with coefficients (0.04, -0.05, 0.07, 
-0.21, -0.5, 0.72, 0.36, 0, 0.21, 0.03, 0.07) (taken from 
[l]). In (Sl) of the BCE algorithm, 6(n) associated with 
J2,2 (p = q = 2) and 2(n) were obtained with L, = 20 
and La = 16. Then, a ( w )  was obtained by the remain- 
ing steps of the BCE algorithm with the initial guess 
IH[Ol(wh)( = 1, FFT length L = 1024, and the param- 
eters ED = 0.1 and C H  = Thirty independent runs 
were performed to  obtain thirty I?(w) and VMSE(W) (us- 
ing - (19)), and their respective averages, denoted a(w) and 
VMSE(W), were computed. For comparison, the average, 
V ( w ) ,  of the obtained thirty p(w)  was also computed. 

The simulation results are shown in Fig. 1 and 2 where 
scale factors and time delays were artificially removed. 
From Fig. l(a) and l(b),  we can see that the magnitude 
response and impulse response of both H ( w )  and l /V(w)  
are quite close to those of H ( w )  for SNR = 20 dB where 
the dashed line and dotted line in Fig. l(b) almost overlap 
each other. On the other hand, as exhibited by Fig. 2(a) 
and - 2(b), the magnitude response and impulse response of 
H(w)  are close to those of H ( w )  and better than those of 
l/V(w) for SNR = 5 dB. These results indicate that g(w) 
obtained by the BCE algorithm is robust against Gaussian 
noise even for the low SNR case (SNR = 5 dB). Note that 
the BCE algorithm spent 2 iterations in obtaining i?(w) 
for each run of this example. 

In addition, as exhibited by Fig. l(c) and 2(c), not only 
&,~(n)  but also 6(n) can be viewed as a good approxi- 
mation to  V M S E ( ~ ) ,  so the latter can also be used as an 
accurate estimate of V M S E ( ~ )  regardless of SNR. 

Example 2. Narrowband Channel 

be a Bernoulli-Gaussian (B-G) sequence [8] as 

- 

In this example, the source signal U(.) was assumed to 

u(n) = uB (n) . UG (n) 

where ug(n) is a Bernoulli sequence with parameter X = 
0.05 and u ~ ( n )  is a real white Gaussian noise with vari- 

ance 0; = 0.0225. The channel h(n) was considered as 
a real minimum-phase ARMA(4,2) narrowband system 
taken from [8], and the noise w(n)  was real white Gaus- 
sian. In (Sl) of the BCE algorithm, G(n) associated with 
JZs2 and 2(n) were obtained with L,  = 40 and La = 30. 
The remaining setups for this example were the same as 
those in Example 1. 

The simulation results are shown in Fig. 3 and 4. From 
Fig. 3(a), 3(b), 4(a) and 4(b), we can see that i?(w) is an 
accurate estimate for H ( w )  fix both SNR = 30 dB and 10 
dB, whereas l/p(w) fails to provide reliable channel esti- 
mate even for the high SNR case (SNR = 30 dB). More- 
over, as exhibited by Fig. fl(c) and 4(c), both D M S E ( ~ )  
and D(n) approximate VMSE(~) well. These results again 
support that the proposed BCE algorithm is effective for 
both high and low SNR, and indicate that both G M S E ( ~ )  
and G(n) are good approximations to V M S E ( ~ ) .  As a final 
remark, the BCE algorithm spent 2 iterations in obtaining 
8 ( w )  for each run of this example. 

VI. CONCLUSIONS 

We have presented a computationally efficient BCE al- 
gorithm for the estimation of any arbitrary LTI channel 
H ( w )  followed by some simulation results to support its 
efficacy. As a by-product of the proposed BCE algorithm, 
the MMSE equalizer estimate ~MSE(W) can also be ob- 
tained immediately via (19) without the training phase. 
Moreover, these results lead to  the conclusion that Shalvi 
and Weinstein’s blind deconvolution criteria JP,* can be 
used to extract channel information (including both mag- 
nitude and phase) even for quite low SNR which together 
with second-order statistical information (power spectra) 
are needed by other nonblind equalizers. 
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Fig. 1. Simulation results of Example 1 for SNR = 20 dB and 
N = 500. (a) The magnitude response and (b) the impulse response 
of H ( w )  (solid line), H ( w )  (dashed line) and l/V&) (dotted line); 
( c )  the impulse response of VMSE(W) (solid line), VMSE(W) (dashed 
line) and V ( w )  (dotted line). 
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Fig. 2. Simulation results of Example 1 for SNR = 5 dB and N = 
2000. (a) The magnitude response and (b) the impulse response 
of H ( w )  (solid line), H ( w )  (dashed line) and l/vlu) (dotted line); 
(c) the impulse response of VMSE(W) (solid line), VMSE(W) (dashed 
line) and v ( w )  (dotted line). 
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Fig. 3. Simulation results of Example 2 for SNR = 30 dB and N = 
8000. (a) The magnitude response and (b) theimpulse response 
of H ( w )  (solid line), H ( w )  (dashed line) and l/VLw) (dotted line); 
(c) the implse response of VMSE(W) (solid line), VMSE(W) (dashed 
line) and V ( w )  (dotted line). 

Fig. 4. Simulation results of Example 2 for SNR = 10 dB and N = 
8000. (a) The magnitude response and (b) theimpulse response 
of H ( w )  (solid line), H ( w )  (dashed line) and l /Vlw) (dotted line); 
(c) the impulse response of VMSE(W) (solid line), VMSE(W) (dashed 
line) and V(w) (dotted line). 
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